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ABSTRACT: We presep~t a model for recovering the direction of heading of an observer

who is moving relative to a scene that may contain self-moving objects. The model builds

upon an algorithm proposed by Rieger and Lawton (1985), which is based cn earlier
work by Longuet-Higgins and Prazdny (198i). The algorithm uses velocity differences

computed in regions of high depth variation to estimate the location of the focus of

ezpan3ion, which indicates the observer's heading direction. We relate the behavior

of the proposed model to psychophysical observations regarding the ability of human

observers to judge their heading direction, and show how the model can cope with self-

moving objects in the environment. We also discuss this model in the broader context of

a navigational system that performs tasks requiring rapid sensing and response through

the interaction of simple task-specific routines.
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INTRODUCTION

Relative movement in the changing visual image provides a primary cue to the three-

dimensional (3-D) structure and motion of object surfaces, and the movement of the

observer relative to the scene, allowing biological systems to navigate quickly and effi-
ciently through the environment. The range of tasks that use relative motion information

imposes different demands on the speed, precision and completeness with which image

motion must be measured and analyzed. Some tasks require precise 3-D models of the
structure and motion of objects in the environment, and careful planning of observer mo-
tions. Examples include high-performance navigation tasks, such as negotiating through

narrow channels or walking a tightrope; and fine manipulation tasks, such as assembling

a model or thresanv~ a ntic. ctaix asks, however, require rapid sensing of rough
environmental layout, followed by quick reflexive responses of the observer. Examples of

this latter type include high-speed navigation tasks, such as racing through a cluttered
environment toward a desired target; and tasks posed by fast-paced sports, such as dodg-

ing objects or other players, making quick moves to intercept a ball, or rapidly adjusting

posture to maintain balance.

For tasks that require rapid sensing and response, there is often no time to construct

elaborate 3-D models of the world. This is especially true for biological systems, which

must rely on neural hardware that is very slow compared to today's high-speed com-
puter hardware. Consideration of the demands of such tasks suggests that the human
visual system may use specialized routines for perfo.ming reflexive actions in response

to rapid changes in the environment. These routines may use only partial or qualitative

information about image motion that is most critical to the task performed. Such critical

information must be extracted from the changing visual image both reliably and with

minimal computation. These low-level reflexive routines might form a primitive base
upon which more elaborate strategies for high-performance navigation or fine object

manipulation are built.

Thiz approach has been develoued previously in the domain of mobile robot navi-

gation (Brooks, 1986; Brooks, Flynn & Marill, 1987; Aloimonos, Weiss & Bandopadhay,

1988; Aloimonos, 1990). Brooks' mobile robots use a control architecture that decom-
poses the overall navigation behavior into an independent set of specific task-achieving

modules. These modules incorporate specialized routines to avoid obstacles, wander, ex-
plore, monitor changes, build maps, and so on. Each module uses only simple sensory

information that is most critical for achieving its desired goal, and the set of modules to-

gether provide the robot with flexible, intelligent behavior. Described as a "subsumption

architecture," the system also embodies the idea that more sophisticated control behavior

can be achieved by building upon more primitive mechanisms that remain intact.

The Medusa system developed by Aloimonos and his colleagues (Aloimonos et al.,
i'5; Aioimonos, 1 9u) follows a sinilar approach, in which a loosely coupled set of
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task-oriented processes are combined to yield a range of navigational behaviors. Sensory
information is obtained from an active camera system, inertial sensors and a robot arm,
and separate modules compute partial image motion information, detect independently

moving objects, isolate image regions that indicate approaching objects, track targets,
intercept objects, and so oin. Individual processes use simple algorithms specialized to
their particular task.

In this paper, we first briefly consider the computation of three critical properties:
(1) the 3-D direction of heading of an observer relative to object surfaces, (2) the time-
to-collision between an observer and an approaching surface, and (3) the locations of
object boundaries defined by discontinuities in image motion. These three properties

are essential for tasks such as high-speed navigation that require rapid sensing and re-
sponse, and ultimateiy these properties must be considered together in a system capable
of performing such tasks effectively. We then focus on the computat'-n of the 3-D di-

rection of translation of an observer relative to object surfaces. After presenting some
theoretical preliminaries, we review existing perceptual literature regarding the ability of
human observers to judge heading direction. We then consider existing algorithms for

performing this computation in light of these perceptual observations. This analysis leads
us to focus on a particular model proposed by Rieger and Lawton (1985) that exhibits
some of the behavior observed in human judgements of heading and also fits well into
the overall approach described above. We present some modifications and extensions to

Rieger and Lawton's model that are aimed primarily at improving its performance in the
presence of image noise and allowing it to cope with self-moving objects in the scene.
The results of computer simulations with this model addres it',. beliavior whe applild to
visual patterns similar to those used in perceptual studies and synthetic images of scenes

containing self-moving objects. Finally, we discuss a number of questions that arise from
this work that could form the basis for further perceptual experiments in this area.

CRITICAL INFORMATION FOR NAVIGATIONAL TASKS

In this section we briefly consider the interaction between three critical processes that

must underlie tasks such as navigation: (1) computation of the 3-D direction of trans-
lation of the observer relative to ooject surfaces, (2) assessment of the time-to-collision
of the observer with approaching surfaces, and (3) the segmentation of the scene into

distinct objects on the basis of motion discontinuities. With regard to segmentation, it is
critical to distinguish between objects that are stationary with respect to the background
and those that undergo their own self-movement. We argue informally that these three

computations taken together are essential, even for the most basic navigational behavior,

and that effective navigation can be performed '.th oly thce three properties. Many

L.- ZJ, , .rat1t, nshere are straightforward and have been considered previously in the
design of navigation systems. Before focusing on the computation of observer heading,
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however, it is important to consider the broader context in which this information is used,
because this context places additional demands on the heading computation.

Consider an observer moving rapidly through a cluttered scene toward a moving
or stationary target, while avoiding obstacles in its path. Clearly the observer must
continually assess its 3-D direction of translation relative to its target, in order to make
constant, correct adjustments of its heading direction to maintain a trajectory toward the
target. In principle, either the absolute or relative directions of translation of the observer
and target could be computed, but for the purpose of tracking, a minimal system must at

least be able to judge reliably whether the observer is heading to the left or right of the
target, and the precision with which the observer makes this qualitative judgement should
increase as the observer's heading becomes closer to the direction toward the target.

In addition to monitoring heading direction, the observer performing a tracking task
must continually adjust his forward speed, in order to insure that he is gaining on the
target. In principle, one could try to assess the absolute 3-D distance between observer

and target, and the absolute speed of both, but for a minimal system, it may be suffi-
cient to monitor the expected time-to-collision between the observer and target, which
essentially depends on the ratio between 3-D distance and speed. If time-to-collision is
non-decreasing, then the observer must increase his forward speed to intercept the target.
Note that from motion information alone, it is only possible to recover the ratio of speed
and distance, rather than absolute parameters. Perceptual studies suggest that human
observers can, in fact, judge time-to-collision in contexts where there is no information
regarding absolute distance or speed (Todd, 1981; Schiff & Detwiler, 1979; McLeod &
Ross, 1983; Simpson, 1988). There is also behavioral data that suggests that time-to-
collision estimates are used in the control of complex motor behavior (Lee, 1974, 1976,
1980; Lee & Reddish, 1981; Lee, Lishman & Thomson, 1982; Lee, Young, Reddish, Lough

& Clayton, 1983). These perceptual and behavioral studies have proposed mechanisms to
extract time-to-collision information from simple image motion measurements, without
a complete solution to the structure-from-motion problem.

The observer must also monitor his heading relative to other object surfaces in
order to detect potential collisions with stationary or moving objects in the scene. The
judgement of time-to-collision is again essential, as the observer should only initiate
an avoidance behavior if an object surface is moving directly toward the observer and
its expected tirae to-collision is small. Without an assessment of time-to-collision, the
observer is likely to initiate non-essentidl avoidance behavior. The magnitude of the
time-to-collision estimate is also useful for determining how rapidly the observer must
react to an impending collision.

Finally, judgemen s o cea6iAc Rcading 41nd1 cimie-tuo-cusion alone are not sufficient

to support effective navigation. It is also essential to determine the locations of object
boundaries, from discontinuities in motion or other visual properties. Such boundaries
are used in a variety of" ways. First, the rapid detection of motion discontinuities quickly



draws the observer's attention to regions nf the image containing objects that could po-
tentiallv collide with the observer, and allows the observer to segment a target from a

moving background. Second, the detection and localization of object boundaries allows
an assessment of the overall size and shape of relevant objects in the scene. If an object

is moving directly toward the observer, this information is essential for determining an
appropriate avoidance movement that successfully steers the observer clear of the ap-

proaching object. If the object is a target being tracked, knowledge of its size and shape
allows an assessment of its rough center of mass, which can serve as the focus of the

observer's approach.

Finally, segmentation is essential for computing relative heading and time-to-collision

reliably and accurately, as it allows the observer to integrate only those motion measure-
ments contained within single objects to compute their properties of motion. Without
this segmentation, the computation of 3-D motion parameters can be degraded by the
inclusion of motion measurements from adjacent object surfaces undergoing different mo-

tions relative to the observer. This is especially problematic for the case of small objects
that may be moving directly toward the observer. Also, patterns of movement created by
multiple objects uiidergoing self-motion can mimic velocity patterns that would normally
be created by critical situations such as a directly approaching object. For example, a set
of objects arrayed around a circle and moving away from the center of the circle mimic
the pure expansion that is characteristic of an approaching object. The detection of ob-

ject boundaries from motion discontinuities allows the distinction of these situations. For
obstacle avoidance, it is further useful to distinguish whether an approaching surface is
stationary relative to the background, or undergoing its own motion, because self-moving
objects may undergo accelerative components of motion.

Many algorithms have been proposed for the detection and localization of object
boundaries from motion discontinuities, which detect these boundaries either before,
during, or after the computation of 2-D image velocities (for example, Reichardt &
Poggio, 1980; Hildreth, 1984; Adiv, 1985; Mutch & Thompson, 1985; Thompson, Mutch
& Berzins, 1985; Schunck, 1986; Spoerri & Ullman, 1987; Hutchinson, Koch, Luo &
Mead, 1988; Waxman & Wohn, 1988; Wohn & Waxman, 1990; for review, see Hildreth
& Koch, 1987). Heuristics have been suggested for distinguishing stationary and self-
moving objects (Jain, 1984; Heeger & Hager, 1988; Zhang, Faugeras & Ayache, 1968;
Burt, Bergen, Hingorani, Kolczinski, Lee, Leung, Lubin & Schvaytser, 1989; Enkelmann,
1990; Frazier & Nevatip, 1990; Nelson, 1990; Thompson & Pong, 1990), some of which are
basc,' .- thc behavio. of motion measurements around motion discontinuities (Thompson

& Pong, 1990). Human observers are very sen-i+ive +4r relative mover,-.-t (for '

see Nakayama (19?55)), although it appears that a large difference in direction and speed
of motion may be required to localize a boundary accurately (Hildreth, 1984). Human
observers can also detect very small objects relative to a moving background (Hildreth,

1984).
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DERIVING 3-D DIRECTION OF TRANSLATION

- THEORETICAL PRELIMINARIES

In this section we present the basic equations relating image motion measurements

to the parameters of translation and rotation of the observer relative to the scene. The

formulation hce assumes that the observer is moving relative to a stationary scene, but

the same geometric relationships hold locally for the case where an object is moving

rigidly relative to the observer.

When an observer moves relative to the environment, he induces a pattern of move-

ment on the surface of the eye due to his translation and rotation relative to objects in the

scene. Assume for now that the observer is moving and the environment is static, and that

a coordinate system is fixed with respect to the observer, with the Z-axis directed along

the optical axis. The translation of the observer can be expressed in terms of translation

along three orthogonal directions, which we will denote by the vector t= (t;,ty,t )T.

Similarly, the rotation of the observer can be expressed in terms of rotation around three

orthogonal axes, which we will denote by the vector w= (w 2 , wY,wz) T . Let the position

of a point P in space be given by the coordinate vector r= (X, Y, Z)T. Then the 3-D
velocity of P in the observer's coordinate frame is given by:

ve (,', 2) T =- t- w x r
~where

.=,= - wyz + wzY

Y"=-ty - wZX + w,,Z

2 =-t,, - w,,Y + wyX.

If we assume perspective projection of 3-D velocity V onto the image plane, with a focal

length for the projection of 1, then the projection of point P onto the image (x,y) is

given by:

X Y
X=z Y=z

The projected velocities in the image plane (i, ,) are then given by:

tZ±tZ +w xy- wy(x 2 + 1) + wy
-t + yt Yz

z + w.(Y2 + 1) - wYXY - w?,X.

• m |
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The first term represents the component of image velocity due to the translation of the
observer and depends on the depth Z to each point in the scene. The remaining terms
represent the component of velocity due to the observer's rotation, and depend only on
the rotation parameters and image location.

The translational component alone yields a radial pattern of velocity, which in the
casc of forwarA trn-n-a+;on, emanates from a single location in the image referred to
as the focu3 of expaniion (FOE), corresponding to the observer's direction of heading.
Note that this translational component depends on the ratios of the three translation
parameters to depth Z. Thus it is not possible from motion information alone to recover
the absolute translation and depth parameters.

THE PERCEPTION OF OBSERVER TRANSLATION

Although the image velocity field contains components of motion due to both the
observer's rotation and translation, psychophysical studies have concentrated on our abil-
ity to measure direction of translation. Navigation tasks impose severe demands on our
ability to perform this computation. Cutting (1986) has shown that under reasonable
assumptions, we require an accuracy of about 10 of visual arc in our judgement of heading
in order to avoid obstacles successfully while running and driving, as well as performing
more challenging tasks such as downhill skiing and aircraft landing. This section reviews
perceptual studies of the ability of human observers to judge their direction of translation,
which suggest that the human visual system can, in fact, achieve this degree of accuracy
under the best conditions. We summarize these studies in some detail, as they will form
the basis for the computer simulations described later.

A series of experiments by Warren and his colleagues (Warren & Hannon, 1988,
1990; Warren, Morris & Kalish, 1988) measured the accuracy with which observers can
judge their heading direction in computer displays that simulate movement toward a
planar surface or 3-D cloud of random dots. The first experiments simulated movement
along a ground plane extending to a visible horizon. A target vertical line segment was
located somewhere along the horizon, and the subjects' task was to judge their direction
of heading relative to the vertical target. That is, the simulated heading would differ
from the direction of the target by varying angular differences, and the subject had to
judge whether the heading on a particular trial was to the left or right of the vertical
line segment. In the initial experiments, the vertical target was visible throughout the
motion of the points, but in subsequent experiments, the target only appeared after the
points stopped moving. A number of factors were varied in these experiments, including
the orientation of the plane relative to the viewer, the observer's speed and direction of
heading, dot density and the terpnral extent of the motion. In later studies, movement
was simulated relative to a random cloud of dots distributed in a 3-D volume of space.

The field of view in the experimental displays was usually 400 horizontal by 32' vertical,
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and the size of individual elements did not change with their position or movement in
depth.

The general conclusion of the studies by Warren and his collagues is that human
observers can judge their heading direction with an accuracy of 1' - 20 of visual angle,
for a variety of surface types and under a range of experimental conditions. Performance
is the same, regardless of whether the vertical target line is visible during the movement
of the points. Observers perform better when higher speeds of translation are simulated,
consistent with earlier observations by Johnston, White and Cumming (1973), and Carel

(1961).

Warren and Hannon (1988, 1990) compared performance under three conditions: (1)
the observer fixated a stationary marker on the display, and the displays only simulated
pure translation of the observer, (2) the observer tracked a moving point in the display,
thus introducing a rotational component of motion, and (3) the display itself contained
both translational and rotational components of motion, and the observer was required to
maintain stationary fixation. For conditions (2) and (3), the same flow pattern appears on
the surface of the eye, but in condition (2), rotational information could, in principle, be
derived from extraretinal eye movement signals, while in condition (3), such information
must be derived from visual input alone. Subjectively, observers could not distinguish
between displays corresponding to conditions (2) and (3), and in the latter case, there was
a strong illusion of tne eye actually moving. It was found that for the case of movement
toward a ground plane, or movement toward a random cloud of dots, there was essentially
no difference in performance between these three conditions. Heading was computed with
an accuracy of 1 - 2' in all three conditions. When simulating translation perpendicular
to a plane, however, performance still reached this level of accuracy in the first two
conditions, but was at chance for the third condition, in which the rotational component
was added to the movements of the dots in the display. Subjectively, observers perceived
themselves as moving toward the point of fixation, which would correspond to a center
of outflowing motion in this case. Similar observations regarding movement toward a
frontoparallel plane were made in other studies (Llewellyn, 1971; Johnston et al., 1973;
Regan & Beverley, 1982; Rieger & Toet, 1985; Cutting, 1938). This observation suggests
first, that extraretinal information regarding eye rotation is used in the analysis of heading
direction, and second, that the passive decoupling of the rotational and translational
components of motion from visual input alone requires differential motion produced by
elements at different depths.

Warren and Hannon (1990) also examined the influence of dot density for simulated
movement toward a 3-D cloud of dots. The number of dots visible at the beginning
of each trial was either 6, 12, 25 or 50. The overall field of view was kept constant at
400 x 32', so the density of dots changed with their number. An average "neighborhood
size" was calculated that assumed the values 6', 40, 2' and 1', for 6, 12, 25 and 50
dots, respectively. A neighborhood size of 2', for example, was defined to mean that
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there was an average of three or more pairs of dots with angular sevarations less than )r

equal to 20, but not three pairs separatd by le.s than or equal to 10, in the first frame

of the display. When the added rotational flow was generated by the subject tracking
a dot on the display, there was no change in performance with dot density (confirming

earlier observations by Warren et al. (1988)), but when rotational flow was added to
the movements of the points, there was some degradation of performance with lower

densities, which became significant at the lowest density (only 6 dots in the display, with

a neighborhood size of 60). Thus, observers could accurately judge heading direction

when presented with a relatively sparse, discontinuous flow field.

The experiments by Warren and Hannon (1988, 1990) and Warren et al. (1988) used

a total viewing time of about 3 seconds, with image sequences of about 50 frames. It was

later found that for the case of pure translation of the observer, there is no deterioration

in performance if the number of frames is reduced, until only 2 - 3 frames are presented
(Warren, Griesar, Blackwell, Kalish & Hatsopoulos, 1990). There is still about 3' of

accuracy for only two frames, with significant improvement when a third frame is added.

Experiments were also conducted in which the total duration of the motion was about 3

seconds, but the lifeti zes of individual dots were varied. With a total duration of about

3 seconds and lifetime of only two frames, subjects could achieve about 10 of accuracy

in judging heading direction, again for the case of pure translation. For the case in
which a rotational component is added to the motions of the points, a more extended

time period may be needed to recover observer heading accurately (W. Warren, personal

communication).

The visual system can also tolerate significant noise, with performance degrading

smoothly with increased amounts of noise. Warren et al. (1990) found, for example,

that in the case of pure translation of the observer, subjects could still judge heading

direction with an average error of 2.60 when the directions of motion of individual points
were randomly perturbed within an envelope of 90'. This result suggests that the heading

computation may involve significant spatial pooling of image motion measurements.

Cutting (1986) examined observers' ability to determine their direction of translation

toward a field of vertical lines that were placed on three frontoparallel planes that were

separated in depth. Subjects were asked to judge whether the display simulated a view

that was to the left, right or in the direction of heading. When the lines were placed at

the same depth, subjects performed at chance, and their heading accuracy improved with

an increased separation of the lines in depth. The best accuracy achieved corresponded

to an angle between gaze and heading directions of about 1.250.

Rieger and Toet (1985) measured subjects' ability to judge their heading direction

relative to two frontoparallel planes of random dots placed at different depths. Trans-

lational and rotational components of motion were combined in the movements of the
points on the display. The following parameters were varied in these experiments: (1)

the direction of translation (possible directions were separated by 2.50 or 50), (2) the
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separation in depth between the two planes (either 0 or 9 meters), (3) the magnitude

of the rotational component of observer motion, and (4) the size of the field of view

(either 10' or 200). Dot density was high, with an average of 700 dots in a single static

frame. For the case of a single plane, performance degraded rapidly as the magnitude

of simulated rotation was increased, sinilar to previous studies. When the points were

placed at different depths, however, subjects could reliably judge heading direction at
Loth resolutions (although performance was worse at the finer resolution), over the range

of angular rotations tested, and with little degradation with the size of the field of view.

To summarize thr pereptual experiments, we make the following observations re-

garding the human recovery of direction of translation:

0 Human observers can achieve an accuracy of about 1' -- 2' of visual angle at judging
heading direction, with or without the presence of a target in the environment.

* Performance improves with higher speeds of translation.

* Performance improves when surfaces span a greater range of depth.

* Extraretinal information regarding eye rotation is used in the recovery of lleadir-g
direction.

* Heading direction can be judged reliably in the presence of significant amounts of

noise in the image motion measurements.

0 For the case ol pure translation, heading direction can be recovered accurately in a

relatively short time of 2 or 3 frames, with accuracy increasing with time.

* Heading direction can also be recovered in a context where the rotational and transla-

tional flows must be passively dccoupled from visual input alone. This decomposition

(1) requires differential motion produced by elements at different depths,

(2) can be performed successfully with sparse, e'scontinuous flow fields, and

(3) requires only a relatively small field of view, at least as small as 100.

The next section examines computational models f(,r the recovery of observer motion in

light of the above observations.

THE COMPUTATION OF DIRECTION OF TRANSLATION

Computa-ional methods for recovering the direction of translation of an observer
relative to a scene can be broadly divided into two classes, depending on whether they
rely on discrete or continuous image motion measurements. In the discrete approach,

a set of isolated image features are tracked over time, and their sequence of positions

torms the input to a system of equations whose solution depends on the parameters of
3-D structure and motion. In the continuous approach, it is usually assumed that an
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instantaneous 2-D velocity field is available at one or more instants of time, and the
image velocities, together with their spatial or temporal derivatives, are used to solve for
3-D structure and motion parameters.

Many examples of the discrete approach pr-. nt theoretical results regarding the
nunimal number of motion measurements required to compute 3-D structure and motion
parameters uniquely (fot example, Uilman, 1979; Prazdny, 1980; Longuet-Higgins, 1981,
1984: Tsai & Huang, 1984ab; Faugeras, Lustman & Toscani, 1987; Aloimonos & Brown,
1989: Wng, Huang & Ahaja, 1989). The direct application of the ma'hematical results
suggests possible algorithms for recovering these paramete:s, but computer experiments

with these algorithms indicate that they mi, b9 vulnerable to error in the image motion
measurements. The ability of the human visual system to judge heading direction accu-
rately for a few. sparse features in motion s-, rgests that the underlying computation must
be able to derive movement parom,:ters from discrete motion measurements, but unlike
existing algorithms, the human system can tolerate large amounts of noise in these sparse
measurements. Recent algorithms that use discrete motion measurements over a more
extended time period exhibit better performance (Uliman, 1984; Broida & Challappa,
1986: Shariat, 1986: Faugeras et al., 1937). Extended time appears to be necessary for
the human system to decouple rotational and translational components of motion on the
basis of visual input alone (W. Warren, personal communication).

Contiuous approaches that use spatial derivatives of velocity require a locally con-
tinuous velocity field, or one that is sufficiently dense that interpolation can be used to
approximate the continuous field (for example, Longuet -Higgins & Prazdny, 1981; Koen-
derink &- Van Doom. 1976; Wxman & Ullman, 1985; Subbarao, 1988; Waxman & Wohn.
1988). Other recent models have used the theory of planar dynamical systems as a basis
for recovering information about 3-D motion and structure (Verri, Girosi & Torre, 1989).
where the time evolution of the structure of the flow field in the vicinity of singularities
(such as the FOE) is used to recover motion parameters. These continuous methods may
hate difficulty with the sparse and discontinuous velocity fields used in perceptual stud-
ies. Scme of these techniqucs also require accurate velocity measurements, which make
them vulnerable to nc.se. Methods that rely directly on spatial and temporal derivatives
of image intensity (Negahdaripoilr & Horn, 1987, 1989; Horn & Weldon, 1988; Heel,
1990a,b) may have difficulty coping with the impoverished displays of isolated dots used
in perceptual studies.

Theie -tre other velocity based approaches that do Aot require a continious velocity
field (for example. Bruss & Horn, 1983; Ballard & Kimball, 1983; Jain, 1983; Lawton,
1983: Adiv. 1985: Burger & Bhanu., 1990: Heeger & Jepson, 1990). Some of these methods
use an optimization approach. in which 3-D motion parameters are computed that yield
a velocity field that best fits the observed image velocities in the least-squares sense, a':d
integrate a large number of image motion measurements, yielding less sc.,sitivity to error.
The human system, however, does not require extensive spatial integration to compute
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heading direction accurately; in contrast, it can cope with both a small number of intion
measurements and a relatively small field of view.

Finally, some methods make direct use of information about motion parallax, that
is. the relative motion of features at different depths, to derive 3-D motion and struc-
ture (Longuet-Higgins & Prazdny, 1981; Rieger & Lawton, 1985; Cutting, 1986). The
difference i% velocity between two points that are nearby in the image, but separated in
depth, depends largely on the translational parameters of observer motion and can be
used directly to infer the direction of translation. The explicit reliance of these methods
on depth variation in the scene makes them appealing from the perspective of th, human
system which fan: for the case of the perpendicular approach to a plane.

To summarize, it appears that most existing models do not exhibit the basic prop-
erties of the human recovery of direction of tralslation. None of these models have been
shown to yield the accuracy o 10 - 2' of visual angle seen in human judgements of head-
ing. over a range of viewing conditions. Some current models could be modified to cope
with some of the range of conditions considered in perceptual studies, but the need to
cope with sparse, noisy and discon inuous motion fields, and the failure of the human sys-
tem with the frontoparallel plane, seems to rule out many models on more fundamental

grounds.

THE RIEGER AND LAWTON MODEL

This section describes the algorithm proposed by Rieger and Lawton (1985), which
is based on earlier work by Longuet-Higgins and Prazdny (1981). This class of mo jls
begins with the observation that at the location of a discontinuity in depth, there will
be a discontinuity in the translational component of the image velocity field because
of the dependence of this component on depth, while the rotational component will be
roughly constant across the boundary. Furthermore, if we construct a field of vectors
that represent the differences 'n velocity across these boundaries, these vectors will be
n,-iented approximately along the lines cornecting their image location with the focus of
expansion the so-called translational field lines), and therefore should all point to the

FOE.

Lcn 5 uet-Higgins and Prazdny suggested an algorithm based on the above obser-
vations that uses instantaneous spatial derivatives of velocity to recover the FOE. This
original algorithm proved to be quite sensitive to error in the image velocity measure-
ments. A robust algorithm that uses this observation to extract the FOE must take into
account the fact that accurate velocity measurements may not be available immediately
to either side of a depth discontinuity. Rieger and Lawton (1985) presented an algorithm
that addresses this problem. The busic steps of the algorithm are as follows. First, the

iffereiices between each local image ,elocity and every other velocity measured within a
restricted neighborhood are computed. From the resulting distribution of velocity differ
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ence vectors, the dominant orientation of the vectors is computed, and this information

is preserved only at locations where the distribution of velocity differences is strongly
anisotropic. Such points will typically arise at locations where there is a strong depth
variation in some direction. The result of this first stage is a set of directions at a number

of points in the image, which are all roughly aligned with the translational field lines.

The FOE is then calculated as the "best-fit" intersection point for all the resulting vector
directions. Once the FOE is determined, then the direction of the translational compo-
nent of motion is known at every location in the image, so that any motion in the original
flow field that is perpendicular to this direction must be due to the rotation of the ob-
server. From these perpe-dicular motions, the best rotational parameters are inferred (a
similar strategy is used by Burger & Bhanu (1990)). Once the rotational parameters are
estimated, the full rotational flow field can be computed and subtracted from the original

flow field to obtain the full translational component of the flow field. Finally, the relative
depth at every point can be computed from knowledge of the FOE and magnitude of the

translational component of motion at each location.

The algorithm proposed by Rieger and Lawton is appealing for a number of reasons.
First, it provides a rough initial estimate of the direction of translation, independent of
the rotation parameters and 3-D shape of the surface. As we discussed earlier, heading

direction is a critical property of observer motion for navigation that must be computed
with high accuracy and speed. We also noted that it is important to detect object
boundaries from motion discontinuities as soon as possible, and these are precisely the

locations that provide the 'est information for this algorithm. Another appealing aspect
of this algorithm is its simplicity and reliance on primitive image motion information,

such as velocity differences, that require little computation. The fact that it does not
rely critically on the solution of optimization problems is also an advantage. Optimization
is used to some extent at each step of the algorithm, but the information being computed

at each of these steps could be obtained to a close approximation with non-iterative

techniques.

One question that arises regarding the Rieger and Lawton algorithm as it stands is
whether it can achieve the degree of accuracy of human performance measured across the
range of conditions that have been considered in perceptual studies. Simulation results

presented by Rieger and Lawton (1985) suggest that the resulting heading accuracy may
be at least within a factor of two or three of the needed accuracy. An especially challenging

aspect of human performance, however, is its ability to cope with sparse displays. The
average angular separation betwveen points in Warren and Hannon's (1990) study is large
compared to the neighborhood sizes used in Rieger and Lawton's simulations. Over
larger distances, the basic observations that the model relies upon become less valid. The

computer simulations presented later suggest that this algorithm can yield the desired

accuracy for the particular conditions of the perceptual experiments, with reasonable

assumptions about the available precision of image motion measurements.
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BUILDING UPON THE RIEGER AND LAWTON MODEL

From a computational standpoint, the most severe limitation of Rieger and Lawton's

model is that it does not cope with self-moving objects in the environment. The difference

in velocity across the boundary between a self-moving object and stationary background,

or between two self-moving objects, in general does not yield vectors that are oriented
along the translational field lines that emanate from the true FOE. Combining these

differences with those obtained along the boundaries between stationary surfaces can

yield significant error in the computed FOE location, especially if self-moving objects

cover a large part of the visual field. Thus, it becomes necessary either to detect self-

moving objects explicitly or to remove their influence on th, 'OE computation by some

implicit means.

This section first considers a different method for performing the FOE computation

in Rieger and Lawton's model that allows self-moving objects to be present in the scene

and helps to isolate the boundaries of such objects. In this context, we also summarize

previous methods for coping with self-moving objects. We then present some additional

modifications to other stages of the algorithm that improve its performance in the pres-

ence of error in the image motion measurements. The results of computer simulations

with the algorithm described here are presented in the next section.

Coping with Self-Moving Objects

We first consider existing methods for detecting and coping with self-moving objects

in the scene. One approach assumes that the camera is stationary, so that significant

_m~g- motion indicates self-moving objects (for example, Jain, Militzer & Nagel, 1977;

Jain, Martin & Aggarwal, 1979; Anderson, Burt & Van der Wal, 1985; Dinstein, 1988;

Bouthemy & Lelande, 1990). A variation on this approach considered by Burt et al. (1989)

implicitly recovers global camera motion parameters by attempting to stabilize regions

of the image, analogous to eye tracking in the human system. Once the image motion

due to the actual camera motion is largely removed, any significant motions that remain

are likely to ue due to self-moving objects. A second approach assumes that the camera

undergoes pure translation, so that any self-moving objects violate the expected pure

expansion of the image (for example, Jain, 1984). If 3-D depth data is available, then

inconsistency between image velocities, estimated observer motion and depth data can

also signal self-moving objects (for example, Thompson & Pong, 1990). Nelson (1990)

shows that it is possible to detect such inconsistencies from partial information about

image motion and observer motion. Nelson also notes that the motion of objects due to

the observer's motion tends to change slowly over time, while self-moving objects can

sometimes generate rapidly changing patterns of motion that can be used to detect their

presence.
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A more general strategy is to compute an initial set of observer motion parameters,
either by combining all available data or by performing separate computations within
limited image regions, and then to find areas of the scene that move relative to the

observer in a way that is inconsistent with the global motion parameters (for example,

Heeger & Hager, 1988; Zhang et al., 1988). With these latter approaches, if all motion

information is used initially, the recovery of observer motion parameters can be degraded
by the inconsistent motions of self-moving objects, especially if self-moving objects cover

a significant portion of the visual field. On the other hand, the use of spatially local
information can yield inaccuracy due to the limited field of view. Thompson, Lechleider

& Stuck (1991) present a variation on this approach that uses a technique from robust
statistics (Huber, 1981) to compute global motion parameters in the presence of so-
called "outliers," which are data that deviate significantly from consistency with the true

parameters. Image motions resulting from self-moving objects are treated as outliers,
and the least median squares algorithm (Rousseeuw & Leroy, 1987; Meer, Mintz, Kim

& Rosenfeld, 1991) is used to compute motion parameters in a way that detects these
potential outliers. Thompson et al. (1991) note that self-moving objects whose projected

image motion is close to the motion that is expected from the observer's global translation
and rotation are difficult to detect with this technique.

We present here a different strategy for detecting and coping with self-moving ob-

jects that builds upon the Rieger and Lawton algorithm. We first summarize the basic
strategy in general terms and then elaborate on the motivation and details. The scheme
first computes local velocity differences and determines the dominant orientation of the

distribution of velocity differences within a small neighborhood of each point, as in the
Rieger and Lawton model. The orientations, 9i, are preserved for the next stage of
the computation only at points where the distribution of velocity differences is strongly

anisotropic. As noted earlier, most of the 9i measurements preserved at this stage are
derived from points on or near depth discontinuities, or along surfaces such as the ground
plane, whose angle of slant relative to the image plane is large.

Some portion of the 9i measurements will point roughly toward the true FOE loca-
tion, while O, measurements obtained in the vicinity of self-moving objects or those with

high error will be oriented in arbitrary directions. Assuming that self-moving objects do
not cover a large part of the visual field, we can obtain a good initial guess of the rough

location of the FOE by looking for limited image regions for which a large percentage of
the 9i measurements point toward locations within the region. In particular, we consider

how much evidence exists to support the FOE being located within a large set of possible
image regions, then choose the region (or regions) with maximum support and use the

8i measurements that provide this maximum support to derive an FOE estimate. This
strategy is analogous to the Hough transform technique used extensively in computer
vision (Ballard & Brown, 1982).

In more detail, after the O, measurements have been derived, the visual image is
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Figure 1. (a) A set of overlapping circular patches that represent regions of the image
that could contain the FOE. (b) Positive evidence for the FOE being located within Pj
is given by a measurement 8i if a line from the point that contains the vector defined
by 8i intersects Pi.

divided into a set of overlapping, circular patches that represent possible regions within
which the FOE may be located, as shown in Fig. la. For each patch Pi, we collect all of
the positive evidence for the FOE being located within P,. Positive evidence comes from
points whose orientation 9i lies along a line that intersects Pi, as shown in Fig. lb. If the
true FOE is located within the patch Pj, then velocity differences computed within the
surfaces of stationary objects or along boundaries between two stationary objects should
yield positive evidence. In this case, points at which an orientation 9i is obtained that
does not yield positive evidence for the FOE being located within Pj either lie within or
near the boundaries of self-moving objects, or they are projected from stationary regions
of the scene, but result in significant error in the computation of 9i. If the true FOE is
not located within Pj, there will still be a number of points that yield an orientation Oi
that incorrectly provides positive evidence for an FOE in P,, but the percentage of points
yielding such false positive evidence should be substantially reduced.

For each patch P,, if a sufficiently large percentage of the available 9i yield posi-
tive evidence for the FOE being located within Pi, then the set of 9i estimates yielding
this positive evidence is used to generate a hypothesized FOE location. If this hypoth-
esized FOE is located well within the patch, it is preserved for later consideration. If

* multiple FOE hypotheses remain after this stage, they are reconciled to obtain a single
FOE location by considering the extent of the positive evidence in their support, their
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goodness-of-fit to the computed 0,, and the proximity of the multiple hypotheses.

The reasoning behind this strategy is that by combining only those Oi measure-

ments that yield positive evidence for an FOE being located within restricted patches,

we significantly reduce the degradation in the FOE computation that can result from the

presence of self-moving objects and from large errors in the 9i estimates. When patches

that contain the true FOE are considered, self-moving obj .. s and large errors in the 9 i

computation are likely to result in 8i estimates that do not yield positive evidence and

hence do not enter into the FOE computation. Patches that do not contain the true FOE

are likely to yield significantly less positive evidence and therefore do not lead to an FOE

hypothesis.

As shown in Fig. la, the circular patches may increase in size with distance from the

center of the image. This serves both to minimize the total number of patches needed to

cover the image and to allow the FOE to be computed more accurately when it is located

toward the center of the image. Reducing the total number of patches reduces the amount

of computation required to test the set of patches for possible FOE locations. The desire

to compute the FOE more accurately toward the center of the image is motivated in part

by properties of human visual processing. Human observers judge their heading direction

most accurately when their eyes are pointed in the direction of heading, and the spatial

resolution of processing in general increases toward the center of the eye. Thus heading

direction is derived most accurately when the FOE lies near the center of the visual

image.

The determination of whether a particular measurement Oi is consistent with the

FOE being located within a patch Pj requires a simple computation. We began with the

Rieger and Lawton model in part because of the simplicity of the criterion for determining

whether the image motion around a point is consistent with a restricted window of FOE

locations. We can either determine whether the orientation 0i falls within a limited cone

of directions defined by the two lines running through the underlying point and tangent

to the circular boundary of P, or whether the perpendicular distance from the center

of Pj to the line containing the vector in the direction Oi is less than the radius of Pj.

The measurements of Oi obtained from points within Pi are not included in the positive

evidence for Pj, because the size of the translational component of velocity is usually

very small in the vicinity of the FOE, yielding velocity differences that are not reliable

indicators of the location of the FOE. We also limit the overall extent of the region from

which 0i measurements are considered for Pj, because the range of consistent orientations

8i becomes too small for points very distant from Pj, requiring too much accuracy in their

estimate.

After the set of 9i that yield positive evidence for a given patch are computed, we

determine whether there is sufficient evidence to combine these Oi measurements to derive

an FOE hypothesis. In particular, we calculate the percentage of all Oi measurements

that yield positive evidence and compare this percentage to a threshold. This threshold
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Figure 2. (a) We consider the positive evidence for the FOE being located within

the central patch P from 6, measurements that could be obtained within the larger
annular region S, for the set of true FOE locations indicated by the solid dots. The
radius of P is 16 pixels, and radius of S is 64 pixels. (b) Graph of the percentage of 8i
measurements that would provide positive evidence for the FOE being located within
P as a function of the true location of the FOE. (c) Given the patch P with radius
16, and a true FOE located 32 pixels to the right of the center of P, the points that
could yield positive evidence for the FOE being located within P are shown in black.

must be large enough to mninimiize the number of false hypotheses generated from patches
that do not contain the true FOE, while at the same time allowing a significant portion
of the visual field to contain self-moving objects. Thus the choice of threshold here is

governed in part by what percentage of points yielding 8, measurements are expected to
be within or near the boundaries of self-moving objects, and in part by what percentage

of points from stationary regions of the scene are expected to yield false positive evidence
for inappropriate FOE locations. With regard to the first factor, we note that if too. much of the visual field contains self-moving surfaces, human observers do not judge
their heading correctly.
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Fig. 2 addresses the second of the factors mentioned above. We consider a patch P
at the center of the image, as shown in Fig. 2a, and determine the positive evidence that
could be obtained for FOE locations within P, for different true locations of the FOE.

Evidence is considered from all points lying within a large circular region surrounding P,
and we assume for this example that every point in the image yields a measurement of 9,
that is directed alng translational field lines emanating from the true FOE. The graph

in Fig. 2b shows the percentage of 0i measurements that represent positive evidence for

FOE locations within P for the set of true FOE locations indicated with solid circles
in Fig. 2a. When the true FOE is located within P, 100% of all 0i measurements yield

positive evidence, but as the true FOE moves outside P, the percentage of points that
could, in theory, yield positive evidence for FOE locations inside P drops rapidly. (For
the simulations presented in this paper, we required that 40 - 50% of the 9i measurements

yield positive evidence for a particdar patch Pj, in order to generate an FOE hypothesis
from Pj.) Fig. 2c shows a map of the points that could yield positive evidence for the

FOE being located within P when the true FOE is located outside P, as described in the
figure legend. If, in a particular scene, all of the available measurements of 9i happen
to fall within the regions shown in black in Fig. 2c, then it could appear that there is
significant positive evidence for an FOE within P, and the set of 0i measurements would

be combined to generate an FOE hypothesis. If the true FOE is located outside P,
the estimate obtained here may not have as good a fit to the Oi measurements as the

FOE hypothesis generated from a correct patch. In general, however, it is possible for
a skewed spatial distribution of the available 0i measurements to yield an inappropriate
FOE estimate.

Self-moving objects can also yield false positive evidence for an FOE being located
within a given patch Pj, especially if an object undergoes a significant translation toward

or away from Pj. If the true FOE is not located within P, then the added 9i measure-
ments from self-moving objects are likely to yield an FOE hypothesis that does not yield

a good fit to the 0i measurements. Even for the patch that contains the true FOE, self-
moving objects with significant translation near but not along the true translational field
lines can distort the computation of the FOE location. We assume that this situation is
rare, and note that when it does occur, it is unlikely to persist for an extended period of
time, or o ver an extended region of the image.

Due in part to the overlap of adjacent patches (see Fig. la), valid FOE hypotheses

may emerge from multiple patches. If there is a single FOE location that both accounts
for a significantly larger percentage of the 9i measurements and yields a significantly
better goodness-of-fit to these measurements, then this FOE location is considered to
be the best current guess. Multiple FOE locations that are close to one another can
be averaged together to yield a current estimate. If, however, there are multiple FOE
hypotheses that have strong support and are distant from one another, it may be possible
to resolve the global FOE through an analysis of possible self-moving objects in the scene,
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* which we consider next.

If there is significant positive evidence for the FOE being located within a patch

Pj, then those points that do not yield positive evidence can be used to detect possible

self-moving objects. In particular, extended, connected groups of such points can signal

a self-moving object. Isolated points or small groups of points yielding negative evidence

are more likely to be the consequence of error in the Oi computation. Some points within

or near the boundaries of self-moving objects will yield false positive evidence for an FOE

within Pj. If, however, such points are connected to an extended region of points yielding

negative evidence, we assume that they represent a continuation of a self-moving object

and generate a new FOE hypothesis with these points removed, as long as their removal

does not then lead to an insufficient percentage of the Oi measurements yielding positive

evidence for an FOE in Pj.

Finally, we note that a coarse-to-fine strategy can be used, in which larger patch sizes

are used first to obtain a rough estimate of the region (or regions) likely to contain the

global FOE, and the size of the patches is then successively reduced to refine the estimated

FOE location. At each scale, a current estimate (or estimates) could be obtained, and

smaller patches could then be centered on the current estimate. Such a coarse-to-fine

strategy provides a rapid assessment of the rough FOE location and reduces the total

amount of computation required to obtain a more precise estimate.

Recent work in the area of robust statistics provides a number of techniques for

deriving global parameters in the presence of significant outliers in the data (for exam-

ple, Rousseeuw & Leroy, 1987; Meer et al., 1991). Similar to the scheme proposed by

Thompson et al. (1991), the 9i measurements derived from self-moving objects could be

considered outliers and general techniques such as the least median squares algorithm

could be applied to the full set of 9i measurements to compute an FOE estimate and

detect the "outlying" self-moving objects. The approach presented here, however, takes

better advantage of the geometrical relationship between 9i measurements obtained from

stationary and self-moving objects and requires far less computation.

Other Modifications of the Rieger and Lawton Model

This section considers some additional modifications aimed primarily at improving

the performance of the Rieger and Lawton algorithm in the presence of error in the image

motion measurements. These modifications include limited temporal smoothing of the

image velocities, a different strategy for computing the dominant orientations, Gi, that

effectively filters the local distributions of velocity differences, and a method for refining

the Oi measurements at a later stage.

If the errors in the instantaneous 2-D velocities of moving features are uncorrelated

from one moment to the next, then smoothing or averaging of the velocity measurements

over time can improve their quality. This temporal smoothing should cover a limited
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time window, however, as the observer's heading can change over a long time interval. In
the simulations presented in the next section, velocity measurements with added noise

that were obtained at two different times were averaged together. This limited smoothing
took place prior to the computation of velocity differences, and significantly improved the

quality of these difference estimates.

The local distribution of velocity differences can be computed in one of two ways.
First, we could take the difference between the velocity of a point Pi and that of each
neighboring point pj within some distance of pi, to obtain a set of velocity differences
associated with the location of pi. If pi has n such neighbors, then the distribution
will contain at most n differences. A second option is to consider fixed neighborhoods

distributed over the image, and to compute the difference in velocity between every pair
of points that falls within each neighborhood. In this case, if there are n points within

n(n-i)veoiydfeeesomud
a given neighborhood, then there will be at most 2 velocity differences computed
within the neighborhood. Both strategies were used in the simulations described in

the next section. For the simulations with the sparse dot patterns used in perceptual
experiments, all pairs of points within fixed neighborhoods were usecd o obtain the local
distributions of velocity differences, while the simulations with images on dense grids
used only the differences between single locations and their neighbors.

.Lo obtain estimates of the dominant orientations, 0j, we first note that the distribu-
tion of velocity differences computed at a point or within a neighborhood that lies in the
vicinity of a depth discontinuity or on a surface with a substantial slant in depth will typ-
ically cover a range of directions, as shown in Fig. 3a. Differences between the velocity of
two points that lie at significantly different depths will be larger and have an orientation
that is roughly along the translational field line that is directed toward the FOE. There

will be some deviation from the orientation of the true translational field line, due to
error in the velocity measurements or to the spatial separation between the two points,
which yields added differences in velocity due to the rotation of the observer. (If the

magnitude of the observer's rotation is not too large, the latter differences will be small.)
Differences obtained from pairs of points at a similar depth will typically be smaller and

have directions that are randomly distributed around the full 3600 range. These latter
difference measurements can degrade the computation of the dominant orientation if all
of the difference measurements are considered together. To reduce this degradation, we
only combine velocity differences within two opposite ranges of 90', as shown in Fig. 3b,

and choose the particular ranges that yield the largest ratio between the overall weight of
the differences obtained within and outside of these ranges. Estimates of 9i are preserved
only at locations at which this ratio is above a specified threshold, indicated a strong

anisotropy in the directions of the velocity differences. The 0i themselves are computed
by finding a line that best fits the set of difference vectors in the least-squares sense;
that is, ths sum of the squared distances of the endpoints of the vectors from this line is

ninirnized.



220

(a) (b)

Figure 3. (a) A typical distribution of velocity differences obtained at a point that is

..ca, a depth discontinuity or located on a highly slanted surface. The larger vectors
represent the difference in velocity between this point and other points lying at sig-

nificantly different depths, and are directed roughly along the translational field line.

Other vectors represent the difference between the velocity at this point and that of
other points located at similar depths. The aim is to compute the dominant direction

of these differences. (b) We find two opposite 90' ranges of orientations that separate
the differences in a way that maximizes the ratio between the sum of the lengths of
the velocity differences lying within and outside of these ranges.

Finally, we note that the 9j estimates can be improved after an initial FOE estimate

is obtained. An initial estimate of the location of the FOE gives rise to a set of predicted
translational field lines, along which local velocity differences should lie. We can then
"filter" the local distributions of velocity differences to emphasize differences whose di-
rection is closer to the orientation of the translational field lines. A new FOE location
can be computed based on the computation of new dominant orientations of the filtered

local velocity differences. In principle, the same strategy can be applied over time. The
location of the FOE can now change over time, so it becomes necessary to estimate the

rotational component of motion as well, in order to predict the displacement of the FOE
in the image due to the observer's rotation. This can be done, for example, in the way
that Rieger and Lawton (1985) propose. At each new moment in time, the current es-
timate of the location of the FOE can be used to weigh local velocity differences in the
computation of a new FOE. A better estimate of the FOE should then result in a better
estimate of the rotational component of motion, yielding progressive improvement over
an extended sequence of images.

O
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COMPUTER SIMULATIONS

This section presents the results of computer simulations with the algorithm proposed

in the previous section. We consider aspects of the human recovery of heading direction

and the use of the algorithm for computer vision systems.

Simulations with the Model Applied to Perceptual Displays

This section summarizes the results of computer simulations with our extension of
the Rieger and Lawton (1985) model, applied to visual patterns similar to those used

in the perceptual studies described earlier. We used synthetic image data (.rresponding

to displays of discrete points whose image motion is determined by the translation and

rotation of an observer relative to a random-dot surface in space. The motions of the dots

on the image plane were computed analytically, and these movements, with or without

added noise, formed the input to the model for heading recovery described in the previous

section. Perspective projection was used throughout this analysis.

We first summarize the conditions of the perceptual experiments by Warren and his

colleagues that we approximately simulated here:

" Observer's translation: The observer translates in the horizontal plane, with a head-

ing direction spanning a range within 60 to the left and right of straight ahead. For

most experiments, translational speed was 1.9 m/sec.

" Observer's rotation: The typical range of simulated angular velocity of the eye was

0.3 - 0.70/sec, covering the full range of 2-D directions. (Note that this amount of

rotation is small.)

" Field of view: 400 horizontal x 320 vertical.

* Temporal extent: Most experiments used a total viewing time of about 3 seconds,

with a frame rate of 15 frames/sec. The simulations presented here, however, used

average displacements computed from only the first three image frames.

0 Ground plane: The observer's simulated eye height was 1.6m and points covered a
plane extending 37.3m in front of the observer. The spatial distribution of the points

was uniform on the plane, creating a non-uniform distribution in the image, due to

perspective projection.

* 3-D cloud: Points were placed randomly within a depth range of 6.9m - 37.3m.

" Frontoparallel plane: A plane was placed at a distance of 9.3m in front of the observer.

* Number of dots: In most experiments, there was an average of 63 dots at the begin-

ning of the movement.
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In these experiments, observers were asked to judge only the horizontal component of

motion. Additional error in the perception of the vertical component of heading would

indicate a larger overall heading error. The accuracy of 10 - 20 measured in perceptual

experiments refers to the horizontal component alone.

The computer simulations also considered the following conditions: (1) points placed

on two frontoparallel planes, whose absolute and relative depths were varied, (2) variation

in the absolute and relative range of depth for the 3-D cloud, (3) wider heading angles,

with directions ranging up to 300 to the left and right of straight ahead, (4) larger

rotational components, corresponding to an angular velocity of the eye up to 100°1 sec.

and (5) a smaller field of view of 20'. Some of these latter issues were motivated by

the studies of Rieger and Toet (1985) and Cutting (1986). Note that with a very large

rotational component, the relative difference between the velocities at nearby locations

due to the translational component becomes very small, reducing the signal available for

recovering the direction (,f heading.

In the computer simulations, we placed thresholds on both the absolute image veloc-

ity and on the velocity differences that were considered detectable. The threshold used

for absolute velocity was 1/sec and the threshold on velocity differences was 10% (see

Nakayama (1985) for a review of data on human tl r.-sholds). Values falling below these

thresholds did not enter into the computation of heading direction. There will be noise

in the velocity estimates, but it is not clear what is a reasonable level of noise to expect

for the visual system. In the simulations, we initially explored the question of what level

of noise in the velocity measurements would yield a heading accuracy of about 20 - 3'.

for the case of translation relative to the ground plane and the overall conditions of the

perceptual experiments summarized above. (It is expected that the greater heading ac-

curacy of 10 - 20 measured for the human visual system could be obtained by extending

the heading computation further in time.) We found that this accuracy could be achieved

with an average error in speed of about 25% and average error in the direction of velocity

of about 250. Error was introduced as Gaussian distributed perturbations of the direction

and speed of velocity, and the average error was recorded for the actual configurations

used in the simulations. An average error in speed of 25% and in velocity direction of

25' was then used throughout the remaining simulations. A small amount of temporal

smoothing was performed to reduce the overall sensitivity of the algorithm to this error

in the initial velocities. In particular, for each configuration of points, three image frames

were generated using a particular set of conditions, the two pairs of adjacent 1rames were

each used to compute the image velocities of the points, noise was added to the two

resulting velocity fields, and the two velocity fields were then averaged to yield a final set

of image velocities from which the velocity differences were computed.

Although the scene consisted of a single rigid surface in these simulations, we used the

strategy described in the previous section for computing the FOE location in the presence

of self-moving objects, in order to reduce the sensitivity of the FOE computation to error
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in the 0, estimates. Three circular and overlapping patches representing possible locations
of the FOE were centered on heading directions located at 60, 00 and -6' from straight
ahead, and each covered an area of radius 60. Thus heading angles computed by the
algorithm could cover a range from -12' to 12' in the horizontal direction. rreliminary
simulations suggested that image patches outside of the regions covered by these three
patches yield significantly less positive evidence, and therefore need not be included in
this analysis. If more that one patch yielded a predicted FOE location, we first checked
whether one estimate was significantly better than the others, in that it had significantly
more positive evidence and better fit to the 0i measurements. If this was not the case.,
then the multiple predictions were averaged together to yield a final estimate.

The results of a set of simulations with the ground plane are summarized in Table 1.
Each data point reprecents an average of the results obtained from 100 examples (that is,
100 different random configurations of points). The full set of parameters used for the first
example (top entry in Table 1) is given in the legend; other entries indicate only the value
of the parameter that was different from the first example. Assuming a ground speed for
the observer of 1.9misec and presentation rate of 15 frames/sec, this corresponds to 0.127
m, frame of observer translation. Similarly, an angular velocity range of 0.3 - 0.7' ,/sec
for the simulated eye rotation corresponds to a range of 0.020 - 0 .0 5 ' per frame. This

initial range of angular velocities that was used in psychophysical studies is very small.
We also conducted simulations with rotations drawn from the range of 5' - 100/sec. The
field of view is defined to be the total width of the field in the horizon, -1 direction. For
each configuration of points, a simuLted heading direction was chosen a- liormly from the
range of 6' to the left and right of straight ahead. For the simulations shown in Table 1.
velocity differences were computed for any pair of velocity measurements falling within a

neighborhood of 60 of one another.

From this initial set of simulations, it can be seen thao direction judgements
improve with higher speed ,,f observer translation and higher density of points, and
degrade with higher error in the velocity differences and a higher angular velocity of
the eye. If the density of points is kept relatively constant, the field of view¢ has little
effect on heading accuracy. These factors interact with one another. For example, with
the limited field of view, higher angular rotations yield significant degradation in the
direction computation, but if the field of view and number of points were increased, a more
accurate heading direction could be obtained for higher rotation speeds. Most simulation
results reported in the literature use fairly large rotational components, which often
yields significant error: such rotations may also yield larger error in human judgements of
heading. Overall, the heading accuracy remains high for the range of conditions explored

here.

In general, as the velocity difference errors increase, there can be substantial error
in the local computations of the dominant orientation of the distribution of velocity
differences within image neighborhoods. If these measurement, are distributed over a
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parameters horizontal

initial parameters 2.5

7.6 in/sec 2.2

200 field of view, 60 points 2.6

40' field of view, 30 points 4.0

200 field of view, 30 points 2.7

40% average speed error 3.9
40' average direction error

5°-10°/sec rotation range 4.4

Table 1. The results of simulations with the Rioger and Lawton model, applied
to images generated by an observer moving along a ground plane. Average errors, in
degrees, are given for the horizontal corr.ponent of heading. The top entry gives results
for the following parameters: observer speed of 1.9 m/sec, 400 fie:t of view, 60 points,
60 heading range. 0.3 - 0.7°/sec rotation range, 25% average error in image speed, and
25' average error in the direction of image velocity.

large field, however, the overall computation of the FOE can still be accurate. There

is a characteristic asymmetry in the pattern of errors obtained over the visual field. In

particular, the directions of the dominant orientation of local velocity differences usually
point to the right of the FOE in the right half of the visual field and to the left of the

FOE in the left half of the visual field. With a roughly uniform distribution of points

in the horizontal direction, these errors effectively cancel one another out in the overall

computation of the FOE. The same observation holds true in the vertical direction. An

implication of this observation is that if the distribution of 8i measurements is strongly

skewed within the visual field, a characteristic error in the heading computation can

result.

The results of some additional simulations with the 3-D c.oud and two planes of

dots are shown in Table 2. For all of these simulations, the field of view was a square of

size 400, which is somewhat larger than the 40' x 320 field of view use d in the perceptual

experiments by Warren and his colleagues. The results of simulations with the ground

plane suggest that the density of points is a critical factor in determining the accuracy of

recovered heading. Because of the somewhat larger field of view used in the simulations
here. we used displays of 80 points, rather than 60, in order to keep the density of points

sinilar to that used in he perceptual experiments. The other parameters used in these

simulations are listed in the legend for Table 2. Overall. it can be seen that similar L:; .Cding

accuracy can be obtained for the 3-D cloud and two planes. In general, accuracy degrades

as absolute depth is increased, but improves as the overall range of depth is increased.
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Errors increase slightly when more oblique heading directions are simulated. In general,
heading direction is underestimated, in that it is closer to straight ahead relative to the
true direction of heading. Again, an increased field of view can reduce the errors for more
oblique headings. Errors increase significantly for very sparse patterns containing only 10
points, largely because the image neighborhoods over which the velocity differ aces are

computed contain very few pairs of points from which to compute the Oi measurements.
For the case of the frontoparallel plane, the errors were very large. For headings chosen

within a 60 range of directions around straight ahead, the average heading error was 5.00
in the horizontal direction.

parameters horizontal

3-D cloud, depth range 7-40m 2.3

3-D cloud, depth range 15-32m 4.0

3-D cloud, depth range 7-40m 5.0
10 points

two planes, 5m and 25m 1.5

two planes, 10m and 20m 2.6

two planes, 20m and 40m 3.7

two planes, 5m and 25m 1.8
60 - 12' heading range

Table 2. The results of simulations with the Rieger and Lawton model, applied
to images generated by an observer moving toward a 3-D cloud of points or two
frontoparallel planes separated in depth. Unless specified above, parameters were as
follows: observer speed 1.9 m/sec, 40' field of view, 80 points, 6' heading range,

0.3 - 0.70/sec rotation range, 25% average error in image speed, and 250 average error
in the direction of image velocity.

Simulations with Self-Moving Objects

This section presents the results of simulations with the algorithm applied to syn-
thetic image sequences containing multiple objects, some of which undergo their own

self-motion. For each example, a known velocity field was first generated from a known

depth map and movement parameters for the observer and objects. Noise was added
to the image velocities, in the form of Gaussian distributed perturbations of their speed

and direction. The algorithm was then applied to the noisy velocity field to recover the
location of the FOE and to detect self-moving objects.
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Figure 4. A synthetically generated depth map, with brightness encoding depth (a
dithered image is shown, so that the density of black and white dots conveys different
brightness levels). Depths range from 75 to 250 units.

A depth map for the scene that formed the basis of these experiments is shown in. Fig. 4. Brightness encodes depth, with darker objects located further from the observer.

(A dithered image is shown, so that the density of black and white dots conveys different

brightness levels.) The scene consists of a set of planar surface patches of different
3-D orientations positioned over a distance of 75-250 units from the observer. From

this known depth map and a set of known parameters for the observer's rotation and
translation, an image velocity field was computed. An example of an original velocity
field is shown in Fig. 5a. The velocities are sampled from an array of size 128 x 128. Noise
was then added to yield velocity fields such as that shown in Fig. 5b. Before computing

the velocity differences, the velocities were then averaged spatially over a neighborhood

of size 3 x 3 pixels, in order to reduce the sensitivity to noise of the subsequent velocity

differences.

The distribution of velocity differences was then computed for each image location.

The distribution at a given location consisted of the differences in velocity between this
location and every other location within a neighborhood of radius 4 pixels. The dom-

inant orientation, 8i, of this distribution was computed using the scheme described in
the previous section, and these 8i measurements were preserved at locations where the
distribution of local velocity differences was strongly anisotropic. For one set of observer
and object motion parameters, a map of all the locations at which the 3, were initially

preserved is shown in Fig. 6a. Isolated 0i measurements that do not belong to a con-

* nected patch of at least 10 pixels were then removed, as it was assumed that the most
appropriate 0, estimates to use for the FOE computation would occur in the vicinity of
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Figure 5. (a) An ideal velocity field obtained from the known depth map shown in
Fig. 4 and known observer motion parameters. (b) The velocity field with added noise.

extended boundaries. The locations of the 6i that remain after this filtering step are
shown in Fig. 6b. These remaining measurements are concentrated around the locations
of boundaries and over the surface of the object in the upper right comer of the image,
which has a large slant. Fig. 6c shows the dominant orientations that are computed at a
sample of the image locations. The true FOE is located near the upper right comer of
the image, and the two objects highlighted in Fig. 6d are self-moving. It can be seen that
there is significant error in the Oi measurements, as those vectors in Fig. 6c that are not
located in the vicinity of the two self-moving objects should, in theory, all point toward
the FOE.

To compute the location of the FOE, the image was carved up into overlapping
circular patches, as suggested in the previous section. In these simulations, the patches
had a radius of 24 pixels and were centered at locations spaced by 24 pixels. For each
patch Pj, the set of Oi measurements yielding positive evidence for the FOE being located
within P1 was then determined. If at least 50% of the 6i measurements yielded positive
evidence, a hypothesized FOE was computed from these measurements. If multiple FOE
hypotheses emerged, they were reconciled to obtain a single FOE location by considering
th, ,xtent of the positive evidence in their support, their goodness-of-fit to the computed
6i, and the proximity of the multiple hypotheses. Fig. 7 shows the true (solid circles) and
computed (open circles) FOE locations for 6 different choices of the observer translation
parameters, and for rotation parameters, = (w2 , w,w) = (0.0, 2.0,0.0) (these rotation
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Figure 6. (a) A map of all the locations where 8i were derived from local velocity
difference distributions with strong anisotropy. (b) Isolated 8i measurements are re-
moved. (c) A sampling of the dominant orientations, 6i. The true FOE is located in
the upper right corner. (d) The locations of two objects in the scene that are self-

moving. (e) Locations where 8i measurements were obtained that indicate self-moving
objects.
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parameters were used to generate the velocity fields shown in Fig. 5). The error in the
final FOE estimates is small, given the large error in the input velocity fields and the 9,
estimates.

Y'

y

14
x

Figure 7. True FOE locations (solid circles) are compared to the FOE locations
derived from the algorithm (open circles) for six choices of the observer translation
parameters. The full extent of the horizontal and vertical axes correspond to an image
distance of 128 pixels.

Once an initial estimate for the FOE location was obtained, extended regions yielding
negative evidence were isolated as possibly indicating self-moving objects. For the ex-
ample shown in Fig. 6, the patch that yielded the most positive evidence is located in the
upper right corner of the image. The 8i measurements that were not directed toward this
patch were isolated, and extended, connected groups of such measurements were hypoth-
esized to correspond to self-moving objects. Fig. 6e shows the final locations found to
arise from self-moving objects, which correspond correctly to the two self-moving objects

in the scene.

SUMMARY AND CONCLUSIONS

This paper first briefly considered the computation of three critical properties for
low-level navigation tasks: (1) the 3-D direction of heading of an observer relative to ob-
ject surfaces, (2) the time-to-collision between an observer and an approaching surface,
and (3) the locations of object boundaries defined by discontinuities in image motion. We
argued that these three properties are essential for tasks that require rapid sensing and
response, and ultimately should be considered together in a system capable of performing
such tasks effectively. We then focused on the computation of the 3-D direction of trans-
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lation of an observer relative to object surfaces. Consideration of perceptual observations

regarding the human recovery of heading direction and existing computational models

led us to examine the model proposed by Rieger and Lawton (1985) in more detail. We

explored some extensions to the Rieger and Lawton model that yield improvement of

:,z perfrmance in the Presence of error in the ima.ge motion meazuremcnts am.d allow
it to cope with scenes containing multiple moving surfaces. The results of computer

simulations with this modified model applied to visual patterns similar to those used

in perceptual studies suggest that it exhibits much of the basic behavior of the human

system.

The style of model developed here was chosen also because it fits into the overall

framework that we are pursuing for the visual processing mechanisms that underlie low-

level navigation. We argued that because of the demands of navigational tasks requiring

rapid sensing and response, the human visual system may use specialized routines that use

only partial or qualitative information regarding motion in the image or in the scene that

can be computed reliably with minimal computation, and which is critical to performing
a specific task. In the model presented here, simple measurements of velocity differences

within local image neighborhoods are used to compute only the direction of observer

heading, independent of the observer's rotation or scene layout. Velocity differences
in regions of significant depth variation provide a direct cue to the observer's heading. that can be exploited with relatively little computation. This partial information about
heading direction can then be used directly by routines that detect potential collisions or

track objects in the scene. Furthermore, because velocity differences will be significant

along discontinuities in depth that occur along the boundaries of stationary and self-

moving objects, they can also be exploited to detect these bo,ndaries. We have shown
that the heading computation itself can embody a strategy for detecting the boundaries of

self-moving objects. This boundary information can also be used by routines that detect

potential collisions, to determine the overall size and shape of relevant objects. Once

an object has been isolated in the scene, the rate of change of the size of its bounding

contour can be used to assess its time-to-collision (for example, Lee, 1980; Todd, 1981).

A number of additional questions regarding the human perception of heading direc-

tion arise from the analysis of the model presented here, which can be explored through

further perceptual experiments. Among these are the following:

* Does accuracy in judging heading direction decrease with more oblique headings,

and is there a general tendency to underestimate oblique headings? Is the size of the
field of view more critical for the accurate judgement of oblique headings?

* Is there degradation of heading judgements when larger angular rotations are simu-

lated, and is the size of the field of view critical in this case?

* Does an asymmetric spatial distribution of points yield characteristic errors in head-

ing judgements, as suggested by the simulations?
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0 Is there a systematic degradation in heading accuracy with a smaller depth range

and larger absolute depth?

It would also be useful to examine the accuracy of our judgement of the vertical com-

ponent of heading direction, in order to assess our overall precision at performing the

heading computation. Other experimental questions arise regarding the recovery of ob-

server heading in the presence of motion discontinuities and self-moving objects. In

particular:

* What is the effect of self-moving objects in the field of view on the accuracy of

heading judgements?

" Is there any difference in performance, depending on whether the boundaries of a

self-moving object yield immediately perceptable motion discontinuities?

* How much of the image must contain significant depth variation? Suppose, for

example, that the image contains a single object (a small frontoparallel plane) in

front of a larger frontoparallel plane in the background. How large must the closer

object be, and how much does it need to be separated in depth from its background,

in order to yield accurate heading judgements?

How much deviation in direction of image motion must a self-moving object undergo,

relative to the motion direction expected from the observer's motion alone, in order

to detect its presence?

Further experimental work that addresses these questions is critical to assessing the ap-

propriateness of a model of the type explored here as a description of the recovery of

heading direction by the human system.

Acknowledgement: I thank Shimon Ullman and Eric Grimson for valuable comments

on a draft of this paper.
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